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We describe here a quantum simulator of extended bipartite Hubbard model with broken sublattice symmetry.
The simulator consists of a structured lateral gate confining two-dimensional electrons in a quantum well into
artificial minima arranged in a hexagonal lattice. The sublattice symmetry breaking is generated by forming
an artificial triangular graphene quantum dot (ATGQD) with zigzag edges. The resulting extended Hubbard
model generates tunable ratio of tunneling strength to electron-electron interactions and of sublattice symmetry
with control over shape. The validity of the simulator is confirmed for small systems using mean-field and
exact diagonalization many-body approaches which show that the ground state changes from a metallic to an
antiferromagnetic (AF) phase by varying the distance between sites or depth of the confining potential. The
one-electron spectrum of these triangular dots contains a macroscopically degenerate shell at the Fermi level. The
shell persists at the mean-field level for weak interactions (metallic phase) but disappears for strong interactions
in the AF phase. We determine the effects of electron-electron interactions on the ground state, the total spin,
and the excitation spectrum as a function of filling of the ATGQD. We find that the half-filled charge neutral
shell leads to a partially spin-polarized state in both metallic and AF regimes in accordance with Lieb’s theorem.
In both regimes a relatively large gap separates the spin-polarized ground state to the first excited many-body
state at half-filling of the degenerate shell. By adding or removing an electron, this gap drops dramatically, and
alternate total spin states emerge with energies nearly degenerate to a spin-polarized ground state.
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I. INTRODUCTION

There is currently interest in understanding electronic
properties of strongly correlated quantum materials often
modelled by an extended Hubbard model. It is expected
that progress in solutions to this intractable problem may be
achieved with quantum simulators. Here we describe a pro-
posal of a quantum simulator of extended bipartite Hubbard
model with broken sublattice symmetry inspired by graphene.
Much progress in quantum simulators has been achieved with
cold atoms and trapped ions [1–11]. Progress in solid state
and photonic-based simulators [12–18,18–28] is enabled by
progress in new materials, including quasi-two-dimensional
electronic systems (2DES) in semiconductor heterojunctions
[29–32] and graphene. The isolation of a single carbon layer,
graphene, introduced a new 2DES with unusual electronic
properties, including the zero energy band gap, relativis-
tic nature of quasiparticles, sublattice pseudospin, and two
nonequivalent valleys [32–39]. Finite lateral size quantization
of graphene opens up an energy gap making graphene a two-
dimensional (2D) atomically thin semiconductor with a gap
tunable from THz to UV [40–49].

Some of these known properties of graphene and their pre-
vious works inspire our approach to create a simulator based
on artificially structured gates on top of a 2D electron gas in a
field effect transistor. Artificial graphene (AG) structures have
been realized already using photonic lattices, nanopatterning,

modulation doping, and scanning probe methods for atomic
manipulation on metal surfaces [2,18,20–27,50–53]. Here we
propose a quantum simulator of graphene inspired bipartite
extended Hubbard model with broken sublattice symmetry.
The working of the simulator is confirmed for small systems
using mean-field and exact diagonalization methods which
show how magnetism, correlations, and phase transitions
emerge, as parameters of the simulator are varied.

We focus here on a very important property of hexagonal
lattice, i.e., the presence of two triangular sublattices. The sub-
lattice symmetry can be broken in finite, triangular quantum
dots with zigzag edges, and a macroscopic band of degenerate
one-electron states emerges at the Fermi level. Lieb predicted
that a bipartite Hubbard model with broken sublattice sym-
metry will have a finite magnetic moment [54]. Indeed, for a
half-filled system, Ezawa, Fernandes Rossier, Kaxiras, Potasz,
and others [42–45,55–57] found the ground state to be par-
tially spin polarized in agreement with Lieb’s theorem [54]
and with exchange interaction being responsible for aligning
spins of electrons on the zero-energy degenerate shell. This
additional polarization was found to be proportional to the
imbalance of the two sublattices and to degeneracy of the
shell, with extra electron spins localized largely at the edge
of the triangular structure. Such small triangular structures
were realized experimentally and confirmed theoretical pre-
dictions at half-filling [58–60]. The presence of a degenerate
macroscopic shell at the Fermi level, analogously to the lowest
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Landau level, was shown to lead to strong correlations in
the ground state. It was found that the addition of a single
additional electron to a half-filled zero-energy shell destroyed
the spin polarization [43,45].

There are several advantages in transferring the physics
of graphene to an AG like quantum simulator where carbon
atoms are replaced by gated quantum dots and the structure is
embedded in a semiconductor host. These advantages include
tunable distance between the dots and depth of confining
potential, programmable lattice symmetry and termination
(i.e., edge type), tunable electron-electron interactions and
interdot tunneling [18,25,27]. Further advantages of AG in-
clude the ability to control values of U/t in a bipartite
Hubbard model, which is not possible with graphene [61,62].
Such control would allow to demonstrate different electronic
phases, including transition from semimetal to an antifer-
romagnetic (AF) insulator [12,63]. Additionally, triangular
graphene quantum dots are susceptible to edge reconstruc-
tion as studied by Voznyy et al. [64]. Edge reconstruction is
responsible for smearing out the distinction between sublat-
tices and reduces the quantum dot symmetry. These combined
features can destroy the magnetic properties of the system.
The difficulty of edge reconstruction is overcome in an arti-
ficial system, where the edge is determined by the external
gate. Another important advantage of AG is that, unlike in
graphene, in AG a single electron can be placed in the system
in order to probe the single-particle spectrum, directly demon-
strating the existence of a zero energy shell and relating it to
many-electron properties.

In this paper we report on the study of the quantum simula-
tor of an artificial triangular graphene quantum dot (ATGQD)
with zigzag edges. The quantum dot is formed by a structured
metallic gate generating a lattice of potential minima arranged
to form a hexagonal lattice forming a triangle with zigzag
edges in a semiconductor quantum well with 2D electron gas.
We compute tunneling matrix elements and Coulomb matrix
elements as a function of AG parameters. We confirm the
existence of a macroscopic shell of degenerate states as found
in triangular graphene quantum dots. Then, we compute the
Hartree-Fock (HF) spectrum for a half-filled system as a func-
tion of the strength of Coulomb interactions as measured by
the ratio of Coulomb on-site repulsion U to nearest-neighbor
tunneling matrix element t . We find a metallic phase with a
zero-energy shell at the Fermi level for weak Coulomb inter-
actions and an insulating AF phase, without a shell, for strong
Coulomb interactions. We find the ground state of a half-filled
system to be partially spin polarized, in agreement with Lieb’s
theorem. With explicit calculations of U/t we determine how
to transition between these two phases. We use exact diag-
onalization techniques to show the spin depolarization as a
function of filling factors for metallic and AF phases. These
results are presented for a small size ATGQD where numerical
calculations are possible and test the viability of the quantum
simulator for large, intractable, systems.

The paper is organized as follows: In Sec. II, we describe
the model, geometry, and Hamiltonian, and in Sec. III we
describe the one-electron tight-binding (TB) model. In Sec. IV
we discuss the many-body Hamiltonian and the calculation
of Coulomb matrix elements. Section V discusses the HF
ground state for weak (metallic) and strong (AF), Coulomb

interactions. In Sec. VI we add correlations within a TB-
HF-configuration-interaction method and demonstrate that the
inclusion of an extra-electron collapses the energy gap and
depolarizes the electronic system.

II. MODEL OF TRIANGULAR ARTIFICIAL GRAPHENE
QUANTUM DOT

We start with electrons confined to a quantum well de-
scribed by a potential V (z) where z is the growth direction.
A metallic gate is deposited on a surface at a distance “D”
from the quantum well. The potential on the gate generates
a potential V (�r − �R) in the plane of a quantum well laterally
confining an-electron at �r in the vicinity of position �R. An
AG structure is defined by structuring the metallic gate re-
sulting in an array of N confining potentials, artificial atoms,
positioned on a hexagonal lattice of potential minima at �Ri

separated by a distance “a.′′ We next introduce a back gate
from which electrons are drawn into the artificial graphene
structure leaving behind a positive, compensating charge de-
scribed by a gate potential Vg. Hence, the artificial graphene
Hamiltonian describing Ne electrons in an array of N potential
traps in a quantum well, in the presence of a compensating
gate potential and including-electron-electron interactions is
given by

H =
Ne∑

i=1

[
− h̄2

2m∗ ∇2
i +

N∑
j=1

v(�ri − �Rj ) + v(zi) + Vg(�ri, zi )

]

+
Ne∑

i< j

e2

κ|�ri − �r j | . (1)

Here we sum over Ne electrons with effective mass m∗ in
the field produced by an array of N sites, interacting with
a gate, confined to a quantum well by potential v(zi ) and
interacting with each other via Coulomb potential screened
by a background dielectric function κ . The potential minima
v(�ri − �Rj ) are finite and smooth confining potentials. Here we
describe these potentials by a Gaussian potential,

v(�ri − �Rj ) = −V0e− | �ri− �R j |2
d2 , (2)

with depth V0 and confinement length d localized in the
plane of a quantum well at �Rj . The one-electron potential
V (r) = ∑

j v(�r − �Rj ) of the AG structure studied here is
shown in Fig. 1. Different structures with different size and
shape can be constructed analogously. Here there are N = 97
sites, with each modelled as a Gaussian confining potential,
with a depth V0 = 300 meV, confinement length d = 10 nm,
and separation of a = 15 nm. We see that the confining poten-
tial forms a triangular quantum well, with minima arranged
on a hexagonal lattice, with visible benzene like rings and
terminated by zigzag edges. Such a structure is an example
of a bipartite lattice with broken sublattice symmetry, and as
such Lieb’s theorem [54] will apply and play a critical role in
determining the nature of the ground state.
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FIG. 1. Potential profile of ATGQD with zigzag edges, with
N = 97 sites separated by a = 15 nm. There is broken sublattice
symmetry in this system in which the number of A sites does not
equal the number of B sites, as seen in the difference in red and blue
dots.

III. ONE ELECTRON SPECTRUM
IN THE TIGHT-BINDING MODEL

We now introduce one-electron into the AG structure
shown in Fig. 1. Following the model described in Sec. II,
the single-particle Hamiltonian is given by

H0 = − h̄2

2m∗ ∇2 +
∑

j

v(�r − �Rj ) + v(z), (3)

where the sum over j extends over N sites and v(�r − �Rj ) is
given in Eq. (2). Here v(z) is a potential of an infinite quantum
well with width 0.1a. Throughout this article, we assume
strong confinement in the z direction, so that the eigenstates
factorize into an in-plane part and part in the z direction, which
we assume to be the lowest state of an infinite quantum well

ξ (z) =
√

2
L sin πz

L . The lateral confining potential is smooth
and parabolic at low energies. Hence we expand the in-plane
part of the wave function ϕ for a state ν in terms of two-
dimensional harmonic oscillator eigenfunctions α centered
on atom j:

ϕν =
∑
j,α

Aν
jαφ0

jα. (4)

Acting with H0 in Eq. (3) on the wave function Eq. (4), and
noting that we can decompose the Gaussian in terms of a
parabolic confining potential plus a correction as v(�r − �Rj ) =
vho

j + δVj with vho
j = −V0 + ω2

4 |�r − �Rj |2 and ω2 = 4
d2 V0, we

get matrix elements of the Hamiltonian in Eq. (3) given by

Hmβ,lα = ε0
βSmβ,lα + 〈

φ0
mβ

∣∣δVm

∣∣φ0
lα

〉
+

∑
j �=m

〈
φ0

mβ

∣∣vho
j + δVj

∣∣φ0
lα

〉
. (5)

Here Smβ,lα = 〈φ0
mβ |φ0

lα〉 are overlap matrix elements for
orbitals β, α localized on sites m, l . Since the harmonic os-
cillator states on different sites defined in Eq. (4) are not
orthogonal, we orthogonalize the basis by solving the gener-
alized eigenvalue problem given by

H̃Bν = ενBν, (6)

where Bν = S1/2Aν and S is the overlap matrix. The corre-
sponding renormalized Hamiltonian given by

H̃ = S− 1
2 HS− 1

2 . (7)

The wave function is now expanded in terms of orthogonal
states ψmβ localized on different sites

φν =
∑
m,β

Bν
mβψmβ. (8)

The orthogonal orbitals localized on site “m′′ are given explic-
itly by

ψmβ =
∑

lα

(S− 1
2 )lα,mβφ0

lβ. (9)

Figure 2 shows the energy levels of a single-electron obtained
by diagonalizing Eq. (7) for N = 97 sites in the basis of three
harmonic oscillator shells, S, P, and D per site, with separation
of potential minima corresponding to a = 12.5 nm, and all
other parameters given in Sec. II. We observe a well-defined
shell of almost-degenerate states at the Fermi level contained
in the 1S band. We note that the Fermi level corresponds to
a half-filled-electron system. The states localize at the edge
of the sample in agreement with that of graphene [42]. Fur-
thermore, a large gap separates the 1S band of levels from
the P and D derived levels and the single-particle spectrum
resembles a spectrum obtained by diagonalizing a tight bind-
ing model with nearest-neighbor tunneling matrix elements
[43]. Thus we limit ourselves to only S orbitals from here
onward in order to simplify many-body calculations. We take
the hopping parameter “t” between nearest-neighbor 1S or-
bitals to be equal to half the bandwidth of the 1S band. We
find t = 26.98 meV for site separation of a = 12.5 nm and
t = 3.18 meV for site separation of a = 15 nm. In Fig. 2 we
see a shell of nearly degenerate zero-energy states at the Fermi
level split by the introduction of next-nearest-neighbor hop-
ping generated by the itinerant orbitals. Note that in artificial
graphene, it is possible to have a single-electron moving in
the system of potential minima, and optical experiments, for
example, could probe the existence of this zero energy shell.

IV. MANY-BODY HAMILTONIAN

With the orthogonalized orbitals ψmβ limited to the 1S
band, we can write the many-body Hamiltonian, Eq. (1), in
the second quantized form as

H =
∑
i,σ

εiσ c†
iσ ciσ +

∑
i, j,σ

ti jc
†
iσ c jσ

+ 1

2

∑
i, j,k,l,σ,σ ′

〈i j|V |kl〉 c†
iσ c†

jσ ′ckσ ′clσ +
∑
i,σ

v
g
iic

†
iσ ciσ ,

(10)
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FIG. 2. (a) TB spectrum for AG triangular quantum dot with zigzag edges near the Fermi level. (b) Sum of charge density for the shell
containing seven states near the Fermi level

where εiσ are the onsite energies and ti jσ are the hopping
matrix elements computed above. v

g
ii corresponds to the back

gate and 〈i j|V |kl〉 are Coulomb matrix elements given by

〈i j|V |kl〉 =
∫∫

d�r1d�r2ψ
∗
i (�r1)ξ ∗

i (z1)ψ∗
j (�r2)ξ ∗

j (z2)

× 2Ry

|�r1−�r2+(z1ẑ−z2ẑ)|ψk (�r2)ξk (z2)ψl (�r1)ξl (z1),

(11)

where the functions ψi are the 1S localized and orthog-
onal orbitals which are defined in Eq. (9). The functions

ξi =
√

2
L sin( πzi

L ) describe the lowest energy sub-band of an
infinite quantum well confining the electrons in the z direction,
while Hubbard U is defined as U = 〈ii|V |ii〉. The back gate
term is given by

v
g
ii =

∑
j

− 2Np

N√
(xi − x j )2 + (yi − y j )2 + d2

gate

, (12)

where Np is the number of positive charges on the gate. The
model assumes that the number of positive charges on the gate
Np is equal to the number of-electron charges in the system N
in order to enforce charge neutrality and is uniformly smeared
on the gate.

Since the Hamiltonian in Eq. (10) cannot be solved exactly,
we start by solving the mean-field Hartree-Fock problem first.

V. MEAN-FIELD HARTREE-FOCK

The magnetic properties of AG, and the nature of the
ground state for different-electron numbers, can be studied
by solving the mean-field HF Hamiltonian obtained from
Eq. (10) and given by:

HATGQD
MF =

∑
i,l,σ

τ 0
ilσ c†

iσ clσ +
∑

i, j,k,l,σ,σ ′
[〈i j|V |kl〉 − 〈i j|V |lk〉 δσσ ′]

× (
ρ jkσ ′ − ρ0

jkσ ′
)
c†

iσ clσ +
∑
i,σ

v
g
iic

†
iσ ciσ , (13)

where ρ jkσ ′ is the density matrix elements for the ATGQD
and ρ0

jkσ ′ is the density matrix for the bulk system. The
choice of ρ0

jkσ ′ is discussed in Appendix, and its purpose is
to enhance convergence. τ 0

ilσ is a tunneling matrix element
which describes the properties of bulk AG in terms of the
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FIG. 3. (a) HF Spectrum for ground state of N = 97 sites at
half-filling with lattice constant a = 12.5 nm. We observe a shell of
distinct degenerate states near the Fermi level, filling up of levels
with spin-up and -down electrons, and a splitting of spin degeneracy
of all levels due to an imbalance of up and down spins found in HF
solution. All states below the Fermi level EF = 0 (middle line) are
occupied and all states above are unoccupied. (b) HF spectrum for
lattice separation a = 15 nm. Note the disappearance of a degenerate
shell at the Fermi level and emergence of a large gap proportional to
Hubbard U separating the valence and conduction band states, AF
spin ordering, and partially spin-polarized ground state.
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FIG. 4. (a) Spin density obtained for the spin-polarized HF ground state for a = 12.5 nm. We observe the system to be in the metallic phase,
with the extra spins occupying the edge. (b) Spin density for the spin-polarized ground state for a = 15 nm. We notice one spin is localized on
one sublattice, while the other, is localized on the other sublattice. Due to a sublattice imbalance this as well leads to spin-polarized electrons
localized on the edge.

tunneling matrix element til and bulk density matrix ρ0
jkσ . It is

given by

τ 0
ilσ = −tilσ +

∑
jkσ ′

[〈i j|V |kl〉 − 〈i j|V |lk〉 δσσ ′]ρ0
jkσ ′ , (14)

Here the superscript 0 on τ 0
ilσ is to denote that it is com-

puted with the bulk density matrix elements. In addition to
the onsite interaction terms, all direct terms are taken into
account, as well as all exchange terms up to next-nearest
neighbors. The bulk density matrix elements are computed in
the Appendix for the AF regime. They have been obtained by
Potasz et al. [45] for the metallic regime. We use the solution
of the tight binding model as an input of our initial state
to the HF equation. We note the Hamiltonian in Eq. (13) is
symmetric with respect to spin and thus can be diagonalized
in separate subspaces for spin-up and spin-down but with the
spin-up Hamiltonian having a dependence on the density of
spin-down electrons and vice versa. We focus on Sz � 0 and
proceed to diagonalize Eq. (13), with results shown in Fig. 3
and Fig. 4. Figure 3(a) shows the energy spectrum for spin-up
and -down electrons in the metallic regime, a = 12.5 nm. We
see a spin splitting of levels due to a spin imbalance obtained
in HF and consistent with Lieb’s theorem. We observe a nearly
degenerate shell at the Fermi level, with the blue spin-up
electrons fully occupying a degenerate shell, leaving the red
spin-down levels completely empty above the Fermi level.
These extra spins are found to align on the edge of the triangle
as seen in Fig. 4(a), with a uniform zero spin density away
from the edges indicating a semimetallic regime. We now pro-
ceed to strongly interacting regime by increasing the distance
between lattice sites to a = 15 nm. We find the ground state
to be again partially spin polarized due to broken sublattice
symmetry in agreement with Lieb’s theorem [54]. However,
we lose a distinct degenerate shell at the Fermi level; instead,
we find a large gap, proportional to Hubbard U , separating the
valence and conduction band, suggesting an insulating phase
[Fig. 3(b)]. We observe an antiferromagnetic spin ordering in
the bulk as shown in Fig. 4(b) as expected in the large U/t

regime [63] and ferromagnetic ordering at the edges of the
ATGQD.

VI. ELECTRONIC CORRELATIONS VIA
CONFIGURATION INTERACTION

A. Electronic Correlations in the Metallic Phase

We now turn to include electronic correlations. Let us
begin with the semimetallic phase. In the example of AT-
GQD with N = 97 sites, the breaking of sublattice symmetry
results in Nd = 7-fold degenerate shell as shown in Fig. 3.
The electronic correlations are most important for electrons
occupying the degenerate shell and we will treat them using
configuration-interaction (CI) method. The remaining back-
ground electrons are treated in HF. Hence we proceed to
solve the HF problem for 97 − 7 = 90 electrons on 97 sites
with N↑ = N↓ = 45. This leaves the degenerate shell at the
Fermi level empty. We then rotate the many-body Hamilto-
nian, Eq. (10), to the HF basis [45,65] for N = 90 with final
result given by

H =
∑
p,σ

εHF
pσ b†

pσ bpσ −
∑
p,q,σ

tpqσ b†
pσ bqσ + 1

2

∑
p,q,r,s,σ,σ ′

× 〈pq|V |rs〉 b†
pσ b†

qσ ′brσ ′bsσ +
∑
p,q,σ

vadd
pq b†

pσ bqσ , (15)

where

tpqσ =
∑

i,l

τilσ a∗
ilσ alqσ , (16)

and

bqσ =
∑

l

alqσ clσ , (17)

with τilσ defined in Eq. (14) but computed with respect
to ATGQD density matrix elements; alqσ are the eigen-
vectors obtained by diagonalizing Eq. (13). We note that
term tpqσ appears in order to lower the contribution of
the quasiparticle-quasiparticle interaction term 〈pq|V |rs〉.
〈pq|V |rs〉 are Coulomb matrix elements in the basis of HF
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FIG. 5. The low-energy spectra in the metallic phase for (a) 97 − 1 electrons, (b) 97 electrons, and (c) 97 + 1 electrons. For 97 electrons
the ground state is partially spin polarized, and we see a large gap that separates this state from other spin states, but the introduction or removal
of an-electron collapses this gap and many spins states exist at very close energies to the spin-polarized ground state for the N = 97 − 1 and
N = 97 + 1-electron cases.

states and are computed by rotating the real-space matrix
elements in Eq. (11) to the basis of HF states. They describe
the remaining interaction of HF quasiparticles beyond the
mean field. The last term in Eq. (15) involving vadd

pq describes
additional HF quasiparticles added to the degenerate shell.
Since we solve the HF problem for Ne = 90 electrons, when
adding HF quasiparticles at the CI level, we must compensate
this charge with additional positive charges on the gate to
maintain charge neutrality. Since a large gap separates the
nearly degenerate shell from other states, it suffices to take
only the shell near the Fermi level for CI calculations and
neglect scattering from the valence band to the shell or from
the shell to the conduction band. Figure 5 shows the low
energy spectra obtained by diagonalizing Eq. (15) for half-
filled system with N = 97, with extra-electron (N = 98) and
with extra hole (N = 96). Focusing on the half-filled (N = 97
electrons) case in Fig. 5(b), we see the ground state of the
half-filled shell to be maximally spin polarized, in agreement
with Lieb’s theorem. The energy of this configuration is well
separated from other states with lower total spin S; in other
words, the energy gap between our ground state and first
excited state with a different total spin S is large. This implies
that the energy cost to flip a spin is large. The removal or ad-
dition of a single-electron, Fig. 5(a) and Fig. 5(c), results in a
ground state which is still maximally spin polarized, but other
low-spin states lower their energy due to correlations, with
many total S states very close in energy. It costs practically
zero energy to flip a spin in this case. In contrast to regular
graphene [45] where the ground state corresponded to S = 0,
the ground state here has S = 3, but we observe a dramatic
drop of the energy gap between different total S states, a phe-
nomenon seen in graphene as well [42,43,45]. Correlations in
the lower-spin states cause a decrease of the energies, and they
become almost degenerate in energy with the maximum spin
state. It is worth noting that the spin of the ground state for

N = 96 electrons is in agreement with [45], and the shrinking
of the gap between different total spins states is consistent as
well.

B. Electronic Correlations in the Antiferromagnetic Phase

Due to the very different quasiparticle spectra for the AF
phase and the semimetallic phase as seen in Fig. 3, we require
two different approaches to the many-body problem. Here we
solve the many-body problem in the AF phase in real space
by improving on the HF ground state in real space. In the AF
phase there is no degenerate shell at the Fermi level. Hence,
we begin with the HF solution in the AF phase. We obtain
the HF solution for a fixed number of spin-up and spin-down
electrons by diagonalizing Eq. (13), yielding a single Slater
determinant defined as

|HFGS〉 =
λ

↑
F∏

q=1

b†
q↑

λ
↓
F∏

q=1

b†
q↓ |0〉 , (18)

where the Slater determinant is defined by filling up HF quasi-
particle levels up to the Fermi level for each spin. We then
rotate this HF state to the site basis. In the site representa-
tion, we have a linear combination of Slater determinants,
and we select the largest contributing state. For example, at
half-filling for Sz = 7

2 , the ground state is given by

|GS〉 =
∏
i∈A

c†
i↑

∏
i∈B

c†
i↓ |0〉 , (19)

where we place spin-up electrons on the A sublattice and
spin-down electrons on the B sublattice, representing a perfect
antiferromagnetic phase. This is the largest dominant real-
space configuration composing that HF ground state seen in
Fig. 4(b). We then divide the Hilbert space into segments
for different Sz subspaces. This is done by starting with the
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FIG. 6. Energy gGap for different number of electrons as a func-
tion of increasing Hilbert space size. In green, we are at half-filling,
and the gap between the ground state and the next spin state is very
large, while for the case where we have added or removed an-electron
from the system, the energy gap collapses to almost zero.

ground state for different Sz, as shown above and constructing
configurations with the same total Sz. The Hilbert space is
divided into five sets of configurations defined by

|O1,0〉 =
∑
i, j,σ

<0DO>

c†
jσ ciσ |GS〉 , (20a)

|O1,1〉 =
∑
i, j,σ

<1DO>

c†
jσ ciσ |GS〉 , (20b)

|O2,0〉 =
∑

i, j,k,l,σ,σ ′
<0DO>

c†
lσ c†

kσ ′c jσ ′ciσ |GS〉 , (20c)

|O2,1〉 =
∑

i, j,k,l,σ,σ ′
<1DO>

c†
lσ c†

kσ ′c jσ ′ciσ |GS〉 , (20d)

|O2,2〉 =
∑

i, j,k,l,σ,σ ′,
<2DO>

c†
lσ c†

kσ ′c jσ ′ciσ |GS〉 , (20e)

where the brackets under the sum denote a restriction of
the configurations in which we include 0, 1, or 2 double
occupancies (DO) measured from the number of DO of the
ground state. The subscripts of |Oμ,ν〉 are defined with the
first number denoting the number of electrons moved and
the second number being the number of extra double oc-
cupancies. We also restrict configurations by allowing only
nearest-neighbor scattering describing correlations. We then
proceed to diagonalize the Hamiltonian in Eq. (10), as it is
written in the site basis and not in the HF basis. We take the
same Coulomb matrix elements as described at the HF stage.
After diagonalization, we observe a maximally spin-polarized
ground state in the case of N = 96, 97, and 98 electrons. In the
case of adding or removing an-electron, the energies are very
close to each other. In Fig. 6 we observe that in the half-filled
case we have a large gap separating this state from any other

FIG. 7. Energy gap vs filling factor for AF (black) and metallic
regime (red). In both cases a similar behavior is observed in which at
half-filling the gap is large and collapses away from half-filling.

spin state. Meanwhile, when we add or remove an-electron the
energy gap between the spin-polarized ground state, and the
spin state closest in energy collapses to nearly zero. We now
compare the metallic phase and AF phases. We first note that
in the metallic phase, we see an emergence of a shell at zero
energy of states which are practically degenerate. Here we are
guided by the intuition that exchange interaction will lower
the energy of a spin-polarized half-filled system thus expect-
ing Lieb’s theorem to be valid. In the AF regime, without the
presence of a degenerate shell, we still see a spin-polarized
ground state. We then explore the regimes where we move
away from half-filling, where Lieb’s theorem does not need
to hold. In both regimes, we see a collapse of the energy gap.
This is consistent with previous work [43,45]. Figure 7 shows
schematically the collapse of the energy gap away from half-
filling. The gap peaks at half-filling and collapses when we
add/remove an-electron. We note that in the metallic regime,
we study this as a function of filling factor and see that the gap
is maximum at half-filling, where the spin-polarized ground
state is most stable.

VII. SUMMARY

In summary, we described here how to construct a quan-
tum simulator of an extended bipartite Hubbard model with
broken sublattice symmetry using a structured lateral gate
confining two-dimensional electrons in a quantum well into
artificial minima arranged in a hexagonal lattice. The sub-
lattice symmetry breaking was generated by forming an
ATGQD with zigzag edges. We demonstrated that in AG
quantum dots, by tuning U/t , we can reach two distinct
regimes, a semimetallic and AF. We showed for small sys-
tems that in both the metallic and AF regimes, the system
at half-filling is partially spin polarized in agreement with
Lieb’s theorem. The addition or removal of an-electron in
both regimes collapses the energy gap and spin polarization.
Such a simulator would allow simulation of larger systems,
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verification of results presented here and potential discovery
of new phases resulting from strong-electron-electron inter-
actions in hexagonal lattice systems inherent in graphene
and transition metal dichalcogenites. The expectation of new
phases arises from the analogy of the degenerate zero energy
shell with the lowest Landau level and the resulting many
phases of the fractional quantum Hall effect.
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APPENDIX

In this Appendix we calculate the density matrix elements
ρ0

jkσ ′ in the AF (see Ref. [45] for derivation in metallic phase).
We start with the mean-field Hamiltonian for bulk AG is given
by

H0
MF =

∑
i,l,σ

tilσ c†
iσ clσ

+
∑

i, j,k,l,σ,σ ′
[〈i j|V |kl〉 − 〈i j|V |lk〉 δσσ ′]ρ0

jkσ ′c†
iσ clσ .

(A1)

Now, if we take only onsite density matrix elements, and
we keep only terms where i = l (i.e., ignore small scattering
elements), then we can write the Hamiltonian as

H0
MF =

∑
i,l,σ

til c
†
iσ clσ +

∑
i,σ

�iσ c†
iσ ciσ , (A2)

where

�iσ =
∑
jσ ′

[〈i j|V | ji〉 − 〈i j|V |i j〉 δσσ ′]ρ0
j jσ ′ (A3)

Postulating that we are in the AF regime, so that

ρ0
j j↑ =

{
1 j ∈ subblatice A
0 j ∈ subblatice B , (A4a)

ρ0
j j↓ =

{
0 j ∈ subblatice A
1 j ∈ subblatice B . (A4b)

We arrive at the expressions

�A↑ =
∑
j>1

〈1 j|V | j1〉 , (A5a)

�A↓ = U +
∑
j>1

〈1 j|V | j1〉 , (A5b)

�B↑ = U +
∑
j>1

〈1 j|V | j1〉 , (A5c)

�B↓ =
∑
j>1

〈1 j|V | j1〉 , (A5d)

where 〈1 j|V | j1〉 corresponds to a direct interaction with a
fixed site we call i = 1 and another site j which is independent
of which sublattice we fix our state i = 1 to, since all sites are
identical. Now we can subtract the constant U

2 + ∑
i>1

〈1i|V |i1〉
from all terms since this leads to only a shift in energies, and
we get

�A↑ = −U

2
, (A6a)

�A↓ = U

2
, (A6b)

�B↑ = U

2
, (A6c)

�B↓ = −U

2
. (A6d)

Taking nearest-neighbor hopping only, the Hamiltonian in the
basis of sublattices A ↑, B ↑, A ↓, B ↓ is given by

H (�k) =

⎡
⎢⎢⎢⎣

−U
2 −t f (�k) 0 0

−t f ∗(�k) U
2 0 0

0 0 U
2 −t f (�k)

0 0 −t f ∗(�k) −U
2

⎤
⎥⎥⎥⎦. (A7)

This Hamiltonian is block diagonal, with each block mimick-
ing gapped graphene. The valence band solution is given by

E−
k = −

√(U

2

)2

+ t2| f (�k)|2, (A8)

ψk−(↓) = − sin
ϕk

2
eiθk

1√
NU

∑
�RA

ei�k· �RAφz
(
�r − �RA

)

+ cos
ϕk

2

1√
NU

∑
�RB

ei�k· �RBφz
(
�r − �RB

)
, (A9a)

ψ
(↑)
k− = cos

ϕk

2

1√
NU

∑
�RA

ei�k· �RAφz
(
�r − �RA

)

− sin
ϕk

2

1√
NU

∑
�RB

ei�k· �RBφz
(
�r − �RB

)
, (A9b)

where U
2 = |E−

k | cos ϕk defines ϕk , and f (�k) is the usual form
factor of graphene. The density Matrix elements are defined
as

ρ0
i jσ =

∑
�k

b∗
�Ri,�k,σ

b �Rj ,�k,σ
, (A10)

where b �Rj ,�k,σ
are the coeficients of the wave function defined

in Eq. (A9). Computing the density matrix we have

ρ0
BB↓ = ρ0

AA↑ =
∑

�k
cos2 ϕ

2
≈ 1, (A11a)

ρ0
BB↑ = ρ0

AA↓ =
∑

�k

(
1 − cos2 ϕ

2

)
≈ t

U
, (A11b)

ρ0
BB↑ = ρ0

AA↓ =
∑

�k
sin

ϕ

2
cos

ϕ

2
e−iθk ei�k·b ≈ 0, (A11c)
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where the approximate solution exploits the fact that we are
in the AF phase and so t

U << 1. This is in agreement with
the numerical calculation of the density matrix elements in a
finite flake in the center of the structure.
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